Home >> Product >> Noble metals >> Cisplatin
←Return Back
  • Product Name:   Cisplatin
  • Synonyms:   LEDERPLATIN;BRIPLATIN;DIAMMINEDICHLOROPLATINATE (II);CPDC;CISMAPLAT
  • CAS No.:   15663-27-1
  • Molecular Formula:   Cl2H6N2Pt
  • Molecular Weight :   300.05
  • Specification :   98%
  • Place of Origin:   China
  • Appearance :   
  • Document :   Download

Description of Cisplatin



Cisplatin Chemical Properties


Melting point  340 °C (dec.)(lit.)


density  3,7 g/cm3


storage temp.  Store at RT


solubility  Soluble in DMF. Insoluble in most common solvents


form  crystalline


color  yellow


Water Solubility  <0.1 g/100 mL at 19 ºC


Merck  14,2317


Stability: Stable. Incompatible with oxidizing agents, aluminium, antioxidants.


CAS DataBase Reference 15663-27-1(CAS DataBase Reference)


EPA Substance Registry System Platinum, diamminedichloro-, (SP-4-2)-(15663-27-1)




Safety Information


Hazard Codes  T


Risk Statements  45-25-41-60-46-42/43-36/37/38


Safety Statements  53-26-39-45-99-36/37/39-22


RIDADR  UN 3288 6.1/PG 2


WGK Germany  3


RTECS  TP2455000


10-21


TSCA  Yes


HazardClass  6.1(a)


PackingGroup  II


Hazardous Substances Data 15663-27-1(Hazardous Substances Data)


Toxicity LD50 in guinea pigs: 9.7 mg/kg i.p. (Fleishman)




Cisplatin Usage And Synthesis


History of discovery Cisplatin is currently one of the most commonly used drugs used in combination chemotherapy with its chemical full name being cis-dichlorodiamineplatinum. It belongs to inorganic metal complexes. After the dissociation of the chlorine atom, it can be cross-linked with the DNA of the cancer cell DNA, thereby destroying the DNA function. It can form intra-strand or inter-strand crosslink with the DNA and may also form a cross-link with DNA and protein, and can inhibit cell mitosis, belonging to cell cycle non-specific drugs. In addition to its anti-cancer effect, it is still capable of inhibiting lymphocyte transformation and having immunosuppression effect and thus can be used as the metal complex-class anti-cancer drugs.
In 1844, it had been first successfully developed by the French chemist Mario Rampini and has been ever called Rampini's salt. It appears as an orange crystal. It has a small solubility (being 0.252 g/ 100 g of water at 25 ℃) and can be produced through the reaction between tetrachloro platinum (II) solution of potassium and ammonia.
In 1891, the modern founder of coordination chemistry, Werner, starting from the study of this class of compounds, had successfully established a complex theory, and clarified the cis structure of the Rampini's salt.
It was not until 1965 that the anticancer activity of cisplatin was found by Rosenberg and his colleagues from University of Michigan USA. When studying the effect of the electric filed on the growth of E. coli, they found that when putting into the metallic platinum to the medium containing ammonium chloride and then sending through 2 ampere for two hours, the reproduction of E. coli was inhibited. Further studies had showed that this is the effect of the cisplatin which is the product produced through the chemical reaction between the ammonia chloride and the platinum ion produced by electrolytic oxidation in the electrode. Rosenberg thought that given that cisplatin can prevent cell division, it should also have anticancer activity. Through the anti-cancer test, it has been proven that there is a good anti-cancer effect of cisplatin, drawing broad interest in metal complexes pharmacology. People had organized international cooperation research on chemistry, biology and medical field, finally enabling the successful applications of cisplatin in the treatment of cancer.
In December 1978, the US Food and Drug Administration had approved cisplatin for clinical application and make it as a commodity to supply the market. It has properties such as broad anti-tumor spectrum and being effective in treating hypoxic cells. However, it has toxicity to the kidneys, nervous system and pancreas. Modern pharmacology has classified this product as antineoplastic agents.


Pharmacological effects Cisplatin is the most commonly used metal platinum complexes with the platinum atoms containing in the molecule being important for its anti tumor effect. However, it is also effective in the form of cis while being invalid in the Trans form. It can be cross-linked to DNA strand, showing cytotoxicity. After its dissolution inside the human body, it doesn’t need carrier transport in the body while being able to penetrate through the charged cell membrane. Owing to the low intracellular chloride concentration (4mmol /L), chloride ions are replaced by the water with the charge being positive which has a similar effect as bifunctional group of alkylating agent. It can combine with the nuclear DNA bases, forming three forms of cross-linking, resulting in DNA damage, further destroying DNA replication and transcription with the capability of inhibiting the synthesis of RNA and proteins at high concentrations as well. Cisplatin is characterized by broad anti-cancer spectrum, being effective in treating hypoxic cells and strong action. It has been widely used in the treatment of testicular cancer, ovarian cancer, uterine cancer, bladder cancer, cervical cancer, prostate cancer and brain cancer with significant efficacy. However, cisplatin has certain toxicity when being used in the treatment of cancer and thus being able to cause side effects. Therefore, it is necessary to continuously identify analogues of cisplatin with less toxicity and clinical effect being similar as cisplatin. So far scientists from various countries have been synthesized and tested thousands of cisplatin-related metal complexes and have developed the second-generation anti-cancer platinum complexes with carboplatin being the representative. The third generation anticancer metal complexes have also been identified with titanocene dichloride as the representative. These compounds have nothing to do with cisplatin from the chemical perspective but they have relative good efficacy in treating some kinds of cancer which can be hardly treated by cisplatin without doing harm to the kidney function. Now people in this area are continuing extensive research with the efforts majorly lining in exploring the anticancer mechanism of metal complexes at the molecular level. China has already started producing the goods of cisplatin and has carried out research in this area.
Cisplatin belongs to non-specific cell cycle drugs with cytotoxicity. Since the proliferation and synthesis rate of cancer cells is more rapid than normal cells, the cancer cell is more sensitive than normal cell to the toxic effects of this product. It can inhibit the DNA replication of cancer cell, and destroy the structure of the cell membrane. It has a strong broad-spectrum anti-cancer effect. It can be used for the treatment of ovarian cancer, prostate cancer, testicular cancer and other genitourinary malignancies with an excellent efficacy. When being used in combination with vincristine, cyclophosphamide and 5-fluorouracil, it has an excellent efficacy in the treatment of malignant lymphoma, breast cancer, carcinoma of head and neck squamous cell, thyroid cancer, and osteosarcoma, etc. Cisplatin, in combination with radiotherapy, can be used in the treatment for patients with advanced non-small cell lung cancer; nasopharyngeal cancer and esophageal cancer with prominent effect. It also has certain efficacy in the treatment of liver cancer and soft tissue sarcoma. Cisplatin, as a strong accumulative drug, is easy to produce renal toxicity with the gastrointestinal reactions being relatively common with neutropenia occurring in some patients but can be restored after the withdrawal of drugs for 7 to 14 days.
In addition, the DNA damage effect of this product can also possibly change the antigenicity in the nucleus or the cell surface so that the original hidden surface antigen is exposed, stimulating the immune suppression of antibodies and exert their cytotoxic effects.
This information is edited by Xiongfeng Dai from Chemicalbook.


Adverse reactions and side effects Upon being subject to one-time injection of cisplatin for 50mg/m2, 25% to 30% of patients can get azotemia. Upon a larger dose and continuous medication, it can have serious and long-lasting kidney toxicity, manifested as tubular swelling, degenerative disease, elevated level of serum urea nitrogen, decreased creatinine clearance, hematuria, proteinuria, and even uremia.
It may have mild to moderate bone marrow toxicity whose degree depends on the amount of cisplatin. Anemia is common and may be accompanied with hemolysis. The patients can get severe nausea and vomiting which often appears at the beginning of treatment within 1h, lasting 8~12 h. The patients can administrate dexamethasone, ondansetron and diazepam to reduce the reaction.
It can cause malignant renal toxicity and is prone to occur at patients free from hydration and patients of diuretic therapy.
Combination with renal toxic antibiotics may increase the risk of enhancing acute renal failure.
It can commonly cause high-frequency hearing loss, and occasionally significant hearing loss. Tinnitus can occur at rare cases.
There may be significant symptoms of hyponatremia, hypomagnesemia, hypocalcemia, and hypokalemia which may occur in a few days after treatment.
After several times of administration can cause allergic reaction which can occur within minutes after administration, being manifested as facial edema, wheezing, tachycardia, etc. The patients should be quickly subject to anti-allergy measures such as antihistamine and adrenocorticotropic hormone.
There may be peripheral nerve toxicity. Hyperuricemia occurs rarely. There are occasional symptoms of orthostatic hypotension.


Chemical Properties It appears as orange or yellow crystalline powder with the Mp being 268-272°C (decomposition). It is slightly soluble in water and easily soluble in dimethylformamide. In aqueous solution, it can be gradually transformed into trans-and hydrolysis.


Chemical Properties Crystalline


Uses muscle relaxant (skeletal)


Uses antitumor agent


Uses Used as an antineoplastic


Definition ChEBI: A diamminedichloroplatinum compound in which the two ammine ligands and two chloro ligands are oriented in a cis planar configuration around the central platinum ion. An anticancer drug that interacts with, and forms cross-links between, D A and proteins, it is used as a neoplasm inhibitor to treat solid tumours, primarily of the testis and ovary.


General Description An anticancer drug. Orange-yellow to deep yellow solid or powder.


Air & Water Reactions Insoluble in water.


Reactivity Profile Cisplatin is incompatible with oxidizing agents. Cisplatin is also incompatible with aluminum. Cisplatin may react with sodium bisulfite and other antioxidants.


Fire Hazard Flash point data for Cisplatin are not available; however, Cisplatin is probably combustible.


Biological Activity Potent anticancer agent that blocks DNA synthesis. Induces apoptosis via p53-dependent and -independent mechanisms. Inhibits X-linked inhibitor of apoptosis protein (XIAP) expression and activates caspase-3. In certain glioma cell lines, sensitizes cells to TNF- α -induced apoptosis.


Purification Methods Recrystallise it from dimethylformamide and check the purity by IR and UV-VIS spectroscopy. [Raudaschl et al. Inorg Chim Acta 78 143 1983.] HIGHLY TOXIC, SUSPECTED CARCINOGEN.




Cisplatin Preparation Products And Raw materials


  Please leave your message to us :

    ( Your Information is an important part of our business,and we will not share or sell any of it to anyone.)

 
Your Name:
Email:
Product: Cisplatin
Message:
 

Products

Contact Us

  • Email: info@vosunbio.com
  • Tel:+86-512-66566131,89888618
  • sales extension 8002